‘Genome design’ model and multicellular complexity: golden middle
نویسنده
چکیده
Human tissue-specific genes were reported to be longer than housekeeping genes (both in coding and intronic parts). The competing neutralist and adaptationist models were proposed to explain this observation. Here I show that in human genome the longest are genes with the intermediate expression pattern. From the standpoint of information theory, the regulation of such genes should be most complex. In the genomewide context, they are found here to have the higher informational load on all available levels: from participation in protein interaction networks, pathways and modules reflected in Gene Ontology categories through transcription factor regulatory sets and protein functional domains to amino acid tuples (words) in encoded proteins and nucleotide tuples in introns and promoter regions. Thus, the intermediately expressed genes have the higher functional and regulatory complexity that is reflected in their greater length (which is consistent with the 'genome design' model). The dichotomy of housekeeping versus tissue-specific entities is more pronounced on the modular level than on the molecular level. There are much lesser intermediate-specific modules (modules overrepresented in the intermediately expressed genes) than housekeeping or tissue-specific modules (normalized to gene number). The dichotomy of housekeeping versus tissue-specific genes and modules in multicellular organisms is probably caused by the burden of regulatory complexity acted on the intermediately expressed genes.
منابع مشابه
Calculation and evaluation of energy deposition and S-value caused by low-energy electrons in a multicellular model using Geant4-DNA
Today, targeted radiation therapy (TRT) methods for cancer treatment, besides the goal of completely destroying the target tumor, attempts to prevent nearby healthy cells from exposure to ionizing radiation as far as possible. Hence, short-range charged particles, such as low-energy electrons that are suited to achieving these two goals together, play an important role in TRT and so, adoption o...
متن کاملThe origins of genome complexity.
Complete genomic sequences from diverse phylogenetic lineages reveal notable increases in genome complexity from prokaryotes to multicellular eukaryotes. The changes include gradual increases in gene number, resulting from the retention of duplicate genes, and more abrupt increases in the abundance of spliceosomal introns and mobile genetic elements. We argue that many of these modifications em...
متن کاملProgress towards quantitative design principles of multicellular systems
Living systems, particularly multicellular systems, often seem hopelessly complex. But recent studies have suggested that beneath this complexity, there may be unifying quantitative principles that we are only now starting to unravel. All cells interact with their environments and with other cells. Communication among cells is a primary means for cells to interact with each other. The complexit...
متن کاملI-5: Multicellular Human Testicular Organoid: A Novel 3D In Vitro Germ Cell and Testicular Toxicity Model
Background Background: Mammalian spermatogenesis is regulated through paracrine and endocrine activity, specific cell signaling, and local control mechanisms. These highly specific signaling interactions are effectively absent upon placing testicular cells into two-dimensional primary culture. The specific changes that occur between key cell types and involved spermatogenesis signaling pathways...
متن کاملNonlinear dynamic of the multicellular chopper
In this paper, the dynamics of multicellular chopper are considered. The model is described by a continuous time three--dimensional autonomous system. Some basic dynamical properties such as Poincar'e mapping, power spectrum and chaotic behaviors are studied. Analysis results show that this system has complex dynamics with some interesting characteristics.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006